
Chapter 2: Getting started
Before we get started with programming, it is important to consider the tools that we need. The first

tool is a text editor for writing code computer. In principle any text editor, even something as simple

as Notepad-type editor, could suffice. However, when writing code, it is useful if the editor comes with

more features that help with and speed up the process of writing and debugging code. Therefore, we

will use what is called more specifically a code editor, which is basically a text editor adapted for writing

code.

The second tool is a code interpreter. Computer code can be written in many different languages. Some

of the more popular ones are C++, C#, Java, and of course Python. In each case, the language is still

human-readable and will still include English words as part of its syntax. Before being executed by a

computer, this code needs to be translated in a format that the computer understands (i.e., it will not

have English words anymore). This is the job of the interpreter. So, when we say that we are executing

Python code, what we mean is that we will use the Python interpreter to read and translate our Python

code into machine language, after which the program will be executed by the computer.

In the following sections we will show three different approaches for writing and executing Python

code. The first two approaches are meant to illustrate what you miss when you are not using a full

Integrated Development Environment (IDE), which will be introduced as the final approach. You can

continue to that section, but having an overview of the different alternatives can be useful for gaining

a perspective on how writing code is related to the tools that you use to write code.

Back to the basics
The most basic setup to get started with coding is a combination of the Python interpreter (which can

be downloaded from the website python.org), and a notepad-like editor to write your code. Figure 1

shows how we have used Notepad to write a Python program, to which we also refer as a Python

script. The one line of code that is in it is the Python instruction for printing the text “hello world” on

the screen. Python code files also use the .py file extension when they are saved.

https://www.python.org/

To run, or execute, this program with the Python interpreter, we can open a command prompt window

(on Windows: press the Windows key and type Command Prompt followed by the enter key). In this

window, navigate to the location where the Python program is stored and give the Python interpreter

the instruction to execute the script by writing python followed by the name of the script. This

process is shown in figure X, and you can see that after instructing Python to execute the script, we get

the expected output.

[Historical note]

Traditionally, writing a hello world application is usually the first thing that you do when learning a new

computer language. In some languages, even this simple program might already require many lines of

code! Luckily, Python is a very accessible language, and it is probably not too difficult to understand

how the code works.

There are several drawbacks to using Notepad as our code editor. First, it is not very practical if you

write an explicit instruction each time you want to run your code. It would be much easier if we

simply had a button that we could click.

Notepad also has none of the handy features that make writing code more pleasant. For example,

when your code has an error, Python will let you know by telling the line on which the error occurs.

To find that line in your code, it would be useful to have the line numbers right in front of your code.

Reading code is also easier if parts of the code receive colors, a feature called syntax highlighting.

Finally, if we can combine the functionality to run the Python interpreter into the code editor, we

finally arrive at what is referred to as an integrated development environment.

IDLE: a basic integrated development environment
If you have downloaded the Python interpreter from their website, you will also have access to IDLE,

Pythons own integrated development environment. The environment has two parts. The Python Shell

is the command line tool in which you can enter single lines of code which will at once be executed by

the interpreter. You can also open a text editor to write a whole script. Figure X shows the program

that displays the hello world message again.

The left margin now has line numbers as an easy reference. Words that are part of the Python language

(i.e., Python syntax), are colored purple, and a green color has been used for the text value within the

print statement. In addition, we can simply run this code navigating to the Run menu and selecting the

Run Module option (or even using the keyboard shortcut F5).

Working with the default Python installation still has some drawbacks. Perhaps the most important

one is that in most code you make use of Python modules, but most modules are not included with

the default Python installation. Therefore, we will switch to using a Python distribution.

The Anaconda Python distribution
The main advantage of working with a distribution such as Anaconda is that it comes preconfigured

with a large set of modules (or Python packages). Modules can be thought of as extensions of the core

Python language that help with solving specific tasks. For example, if you want to create a graphical

plot of data that you have, a plotting module can take care of most of the work. Or if you want to

perform numerical operations on large sets of data you can use the numpy module which implements

algorithms that are designed to perform these calculations in the most efficient way. In both cases, the

big advantage of using a module is that it abstracts away most of the technical details for the tasks you

want to perform. For example, with a plotting module you only need to supply a set of x and y-

coordinates, and the module will take care of creating a figure and make sure that everything looks

nice.

One of the main challenges when installing a module is dependency management. Most modules

depend on other modules themselves. Most modules also improve and change over time. It could

therefore happen that you install a module A which depends on module B. Module B could already be

present on your computer because you needed it in the past when you installed module C. But module

A needs a more recent version of module B. You can see how this can easily get out of hand. In a

distribution this dependency management will already have been taken care of.

The Anaconda Distribution comes with an integrated development environment called Spyder. It has

all the features that we already mentioned (code completion, syntax coloring, debugging support, …).

It also has features that are useful in a workflow focused on data-analysis, such as integrated plots.

Overview of the Spyder IDE
After launching the Spyder IDE for the first time, you will see a window with a layout like the one

presented in figure X. There are three key areas in this screen: The IPython console window (1), the

code editor (2) and the help window (3). Let’s discuss each of these parts in turn.

Figure 1 The Spyder IDE. The numbers correspond to the IPython console (1), the code editor (2), and the help window

IPython console window

The IPython (which stands for Interactive Python) console window is a live Python interpreter, like the

Python Shell window discussed previously. At the prompt you can enter a single line of code and

pressing return will execute that line. Try writing the instruction: print(“hello world”), and

observe how this produces the text hello world (just like the program we wrote earlier). Every time

2

3

1

you use a print statement (whether directly at the prompt or in a script as we will do later), this is

where its output will appear. Python syntax can also be appended here by a question mark, and

running this line will usually print a Docstring in the console window. A docstring, or documentation

string, is a brief description that explains how a specific piece of Python syntax can be used.

Code editor

The code editor is where we will Python programs or scripts. A newly created script will already have

some text formatted as a comment on top. This is where you would have a small description of the

code's purpose.

Tools window

This window has several auxiliary tools that can be accessed across for tabs. The help tab can be used

to look up information on specific Python keywords (a sort of dictionary for the Python language). The

variable explorer tab gives an overview of all the active variables that are present in a script, as well as

their type and corresponding values. You can check that if you create a new variable in the console, it

will pop up in this list. There is one more tab for showing plots (but there is an option that can be

configured so that plots are always displayed as a separate window). The final tab is an integrated file

explorer.

Diving into Python
After covering the tools, we can finally dive into some real programming! In this section we will start

with Python code that can be entered in the IPython console window so that you get an immediate

result. Although this is probably not too exciting, let us start by using Python as a calculator by entering

the following instruction:1 + 1

This will produce the number 2 as a result in the console window. More typically we would like to store

the results of any kind of calculations in a variable. That way we can easily refer to the result of the

calculation later in our script, without having to perform the actual calculation again. The line of code

below has the same instruction, but now the outcome will be assigned to a variable named result.

result = 1 + 1

Because we are assigning the result of this calculation to a variable, this line of code will not produce

any output. Instead, a variable will have been created. You can verify this by now simply entering the

name of the variable as an instruction, which will show the content of that variable in the console

window. Alternatively, you can go to the Variable Explorer tab in the tools window. This will show the

name of all created variables and their respective values.

division_result = 5/2

In addition, it has a ‘type’ column, which shows what sort of data is stored in the variable. Natural

numbers are represented in Python using the integer or int type. If you do a division, the result will be

a real number which is in Python is called a float type. Textual data is stored in a str (string) type

variable. To assign textual data, you place the actual text between either single quotes or double

quotes. Which one you use does not matter, but the opening quote must be the same as the closing

quote.

my_name = “Christophe”

Type conversions
Data can occasionally be stored in a type not suited for the operations you want to perform on it. For

example, we can store the number two both as an integer type as well as the string “2”:

my_number = 2

my_string_number = “2”

Although you might initially think that both variables have the same value, the way they are

represented in Python makes them fundamentally different. You can confirm this by asking Python to

compare both variables with each other. To make this comparison, we use two equality symbols (==):

my_number == my_string_number

Python will return the value True if the content of both variables is the same, and the value False

if that is not the case. After creating the two variables above, run the line of code and see what result

you get. Is it what you expect?

The variable types determine what type of operations can be performed with them. When a and b are

both integer type variables, we can perform mathematical operations on them by writing a + b, or a –

b. But what if a and b are both string type variables that have numbers formatted as text? Would the

same mathematical operations still have the same effect? The answer is no, and it is a good exercise

to play around in the console window to see which operations also apply for text.

If you have numerical values stored as string types, but you need to work with them as actual numerical

values, you can perform a type conversion. In the line of code below, the int() function has been

used to convert the value stored in the string variable into an integer type that is now stored in the

variable a. For this operation to be possible, the string variable does need to have an integer. If not,

the conversion will fail, and an error will be raised (we will see how to handle this situation in later

chapters). The second line shows that the conversion can also be done in the other direction.

a = int(my_string_number)

b = str(my_number)

A note on naming variables

Choosing proper variable names is important. Studies have shown that on average, a programmer

spends ten times as much time reading code than writing code (because we need to fix errors or try to

find better ways to solve a problem). Therefore, we should do everything we can to make our code as

readable as possible.

Variable names should be chosen so that they reflect what that variable means within your program.

For example, the number 18 can be assigned to a variable labeled age if that is what it means in that

program. But in another program, the number 18 could reflect the number of pages in a book, and

n_pages would be a better name. In both cases, using single letters such as x or a general name such

as number is less meaningful.

There are a few cases where convention deviates from this rule. When dealing with spatial coordinates

one can use the usual mathematical names such as x, y and z. Likewise, when dealing with indices in

data structures such as list (which will be covered in later chapters), the use of the letters i, j, and k

is common.

A note on writing variable names

Once you have decided on a name, there are still several options for writing out that name. For

example, if you have a variable to hold the age of a user, will you write userAge, userage, or

user_age? The first way is called camel case labeling. It uses lower case characters for the first word.

Later words are added by capitalizing the first letter of each word.

The last method is referred to as snake case labeling. It uses only lower-case characters, and spaces

are represented by using underscores. This is in fact the recommended style according to the Python

style guide and is therefore the style that we will use in this book. Using a consistent style throughout

your code is also another important way to improve readability. And although we do not want to force

you to use a specific style, there is in fact some research that suggests that snake case labeling has the

most benefits when it comes to readability.

Sometimes you will see that variables are typed using all uppercases. This is another Python convention

that is used for variables for which we assume that their value will not change once they have been

created. For example, the background color of an application could be indicated with the variable

BACKGROUND_COLOR = “green.” In Python, this does not prevent you from assigning a new value to

this variable (in some languages, declaring one as constant will raise an error when you try to change

it). It only acts as a visual reminder for the person working on the code that the content of that variable

is not supposed to be changed.

Diving deeper into Python
In the following section, we will revisit the code from the earlier section and introduce technical jargon

for the operations we have performed. The reason for treating this in two separate parts is that the

technical terminology can make things sound more complicated than they are. Even without knowing

the right terminology, you had no difficulties understanding the code in the earlier section. But

knowing the right terminology can be helpful in situations where your code produces an error (which

it usually will). That error message will use technical jargon, so being familiar with it will help you fix

errors more easily.

Operators, operands, and expressions
Let us retake the first line of code we wrote:

1 + 1

In Python and other programming languages, the addition symbol is called an operator. Python has six

categories of operators: arithmetic operators, comparison operators, logical operators, assignment

operators, membership operators and bitwise operators. In this chapter we will cover arithmetic,

comparison, logical and assignment operators. The membership operator will be discussed in the

chapter on data structures. The bitwise operator is beyond the scope of this book.

Operators need to work on something. In Python, we refer to the value on the left and the value on

the right side of the operator as the left operand and the right operand. The operators and the

operands together form an expression (here, an arithmetic expression). Loosely speaking, an

expression can be thought of as code that produces a value when it is executed by the Python

interpreter. Python even has the concept of a literal expressions, which means to any value by itself

(e.g., 5 is a literal expression).

Arithmetic operators
Arithmetic operators are used to write arithmetic expressions. The different operators are listed in

table 1. If your mathematics is a little bit rusty, the modulus operator might need some refreshment.

It goes hand in hand with the floor division operator, and both deal with the realm of integer numbers.

If you have the integer number 5 and perform a floor division with the number 2, you will get 2 as a

result. This is because using integer division, the number 2 fits exactly 2 times in the number 5. But this

leaves us with a rest of 1, which can be obtained by performing the modulus operation 5 % 2. The

mathematical background is that for a given number y and a divisor x, the number y can be expressed

as

y = ax + b

In this equation, the value a is produced by performing the floor division y // x, and the value b is

produced by the modulus operation y % x. Other than being a mathematical technicality, there are

also some useful applications of this operator. For example, you can use it to check if a number is

divisible by another number (think what the result of the modulo operator will be here). This means

that in an experiment with many trials, you could use this operation to pause every Nth trial (by

checking if the current trial number is divisible by N).

OPERATION OPERATOR

Addition +

Subtraction -

Multiplication *

Division /

Floor division //

Exponentiation **

Modulus %

Table 1 An overview of the arithmetic operators

Comparison operators
Once a variable has been assigned a value, we typically want to perform checks on its value. For

example, before letting people take part in an experiment, we might ask for their age and allow only

participants within a certain age range. Another example is a login system. After providing a username

and a password, you will want to check if the password matches a stored password that corresponds

with the username. These checks can be performed using the comparison or relational operators (table

2). They form expressions that result in a truth value or a Boolean value. A Boolean value is either

true or false and reflects the relation between the left and right operand established by the

operator holds.

OPERATION OPERATOR

Equality ==

Inequality !=

Smaller than <

Larger than >

Smaller or equal to <=

Larger or equal to >=

Table 2 An overview of the comparison operators

Logical operators
Logical operators are used to evaluate the relationship between truth values (this means that the left

and right operand are always Boolean values). Suppose we have created an age variable. We want

to verify that the value of this variable lies in the interval [5, 8]. This is true if the value is both larger

than 4 and smaller than 9. We write the expressions for each individual comparison, and then we use

the logical and-operator to verify that both relations hold simultaneously:

age > 4 and age < 9

Let us decompose the expression above in small steps to see how Python interprets it. Suppose that

the value of age is 6, then the first thing that happens is that the name of the variable will be replaced

by the actual number:

6 > 4 and 6 < 9

Evaluating the comparisons will lead to the following

True and True

At this point, you can use the truth tables to check what the result will be. The and operator will return

True only if both the left and the right operand are true at the same time. The or operator will return

true if either the left or the right operand (or both) are true.

LEFT OPERAND RIGHT OPERAND RESULT

True True True

True False False

False True False

False False False

Table 3 Truth table for the and operator

LEFT OPERAND RIGHT OPERAND RESULT

True True True

True False True

False True True

False False False

Table 4 Truth table for the or operator

A third operator, the not operator, can be used to ‘switch’ a Boolean value. That is: not True will

return False and vice versa, not False will return the value True. For example, if you do not want

participants in an experiment to be older than 12, you could check the condition

age <= 12

Alternatively, you could also evaluate the condition

not age > 12

Both expressions result in the same value and are in that sense equivalent.

Assignment operator
The assignment operator is used to assign values to variables. It uses a single equality symbol (as

opposed to the double equality symbol when making comparisons). The assignment only works in one

direction. That is, the value is always taken by evaluating the right operand and assigning it to the left

operand:

result = 1 + 1

Writing your first script
The earlier section could be followed by writing out each line of code in the IPython console. We will

now switch to using the code editor and start writing more elaborate programs. To execute this code,

we now need to give explicit instructions to run it. If we want any output to appear, we now also need

to give an explicit instruction to print this output in the IPython window. That is, writing 1 + 1 in the

console window will produce the result 2. But writing 1 + 1 in the code editor will not show this result.

Here we need to give the instruction print(1 + 1).

A program can also take input from a user. This can be achieved by using the input() function.

Between the parentheses you can supply a string that will be shown as a prompt in the console

window. The user can now type something, and by pressing enter the control is handed back to the

code in the script, and anything that the user has typed is assigned to a variable. This is shown in the

code below:

1. print("Welcome to WelcomeApplication v1.0")
2. user_name = input("Please enter your name: ")
3. greeting = "hello, " + user_name
4. print(user_name)

Listing 1: A program that provides a welcome message to a user

Before running this code, make sure to read it first and that you understand what each line of code

does. As already mentioned, people typically spend significantly more time reading code than writing

code. It is therefore important that in addition to learning specific Python syntax and terminology, you

also become fluent at reading and understanding code examples. It can therefore be informative to

first try to predict what a piece of code will do so that you can test your interpretation against the

actual output. It can also be fun to just play around with the code by making some slight changes and

seeing how they affect the output of the program, and if this change in output is what you predicted.

A final comment
A typical script will also have comments in addition to the Python code. Single line comments are

started with the # symbol. Multiline comments start with three double quotes and are closed with

three double quotes.

1. # Print a welcome message
2. print("Welcome to WelcomeApplication v1.0")
3.
4. # Request the name
5. user_name = input("Please enter your name: ") # This is an inline comment
6.
7. # Construct the greeting text
8. greeting = "hello, " + user_name # Produce a welcome string
9.
10. # Display the greeting text
11. print(greeting) # Display the greeting string

Listing 2 Our Welcome program extended with comments

Comments can be used to add documentation to your code, and there are official guidelines for how

to construct and format comments in Python. They can also be a useful tool when you are starting out

to learn about programming. In that case, you could use them to add annotations, or you could use

them to set up the structure of your code in comments first and then fill in the actual code in a later

stage based on the structure that you have provided.

In professional environments, the comments that are present in the example below would be

considered redundant as the meaning is quite clear from the code itself. If you produce code that needs

to be shared with multiple people, it is indeed a good practice to clean this up and make sure that your

comments add something to the clarity of the overall code. But if you are not in that situation, consider

the editor your canvas and add any comments that you find useful for yourself.

https://peps.python.org/pep-0008/#comments

	Chapter 2: Getting started
	Back to the basics
	IDLE: a basic integrated development environment
	The Anaconda Python distribution
	Overview of the Spyder IDE
	IPython console window
	Code editor
	Tools window

	Diving into Python
	Type conversions

	Diving deeper into Python
	Operators, operands, and expressions
	Arithmetic operators
	Comparison operators
	Logical operators
	Assignment operator

	Writing your first script
	A final comment

