
Chapter 3: Control flow
In the context of computer programming, control flow refers to the sequence in which each line of

code is executed. The script in the previous chapter had a straightforward sequence: each line of code

was executed once and one after the other until the final line was reached. Most of the time, this

sequence will not be as straightforward.

Consider the design of a user login system, where you must verify a user’s password against a stored

one. If they match, you display a message that the user has been granted access to the system. If they

do not match you display a message saying the login credentials are incorrect. These two messages

require distinct sets of code to generate them. Which one is executed depends on the outcome of the

password comparison. In this situation, we will use a control flow mechanism called an if-statement.

This statement evaluates a logical expression and allows you to specify distinct sets of code to be

executed, depending on the outcome of the evaluation.

In other situations, some lines of code will need to be interpreted not once but several times. This

procedure is commonly known as looping, and Python has two mechanisms to implement this. A first

mechanism is used when the decision to repeat a block of code can be defined by a logical expression.

For instance, we might design a demographics program that requires participants to enter their age as

a number (i.e., 16 and not sixteen). In that case, we could get the user input, check if it is an actual

number, and repeat these steps if the participant's input is invalid. Stated differently, if the

participant's input is invalid, we want to repeat a block of code. This mechanism is called a while-loop.

In the example above it is not possible to know precisely in advance how many times a block of code

will need to be repeated (because that depends on the input that the user provides). However, there

are scenarios where you do have prior knowledge of the exact number of repetitions needed. For

example, if you want to step out the edges of a square, you could write a procedure to move forward

a fixed distance, followed by a 90° turn. By repeating this procedure precisely four times you have

stepped out a square. Another example can be found in psychological experiments, where there is a

predefined list of parameters specifying how a stimulus hould appear in each trial. For each item in

this list, trial-specific code is executed, involving actions like displaying the stimulus with the given

parameters and collecting responses. Python addresses these situations with for-loops.

The if-statement
To explain the different control flow mechanisms, we will use a combination of pseudocode and flow

charts. Pseudocode resembles actual Python code with some parts that still need to be replaced with

actual code. A flow chart is a visual representation that represents your code as a collection of

rectangular blocks. Diamond-shaped blocks stand for parts in your code where decisions are made

about what code will be executed next, and they can be used to visualize how execution in your

program will progress.

Figure 1 Pseudocode (left) and control flow diagram (right) for the if-statement

The if-statement, depicted in Figure 1, consists of two parts: the if statement’s header and its body. In

the header, we begin with the “if” keyword, followed by a boolean expression, and conclude with a

colon. Following the header, the next line of code is indented by a certain number of spaces to signify

its inclusion in the body of the if-statement. The body will only be executed if the boolean expression

in the header evaluates to True. It can have multiple statements, under the condition that each

statement is also indented by the same number of spaces. Most code editors will recognize that you

are writing an if-statement and will take care of the indentation for you.

Listing 1 gives a demonstration of an if-statement in a program that evaluates a reaction time variable.

The header of the if-statement has a boolean expression comparing the variable to a constant value.

The body has a print statement that will be executed if the value for the reaction time is smaller than

200. Before running this code on your computer, try to predict the output. What do you think will be

printed here?

1. # Define a variable
2. reaction_time = 200
3.
4. print("We will now compare the value of reaction_time to 200")
5.
6. # Evaluate the if-statement
7. if reaction_time < 200:
8. print("Well done")
9.
10. # First line of code after the if-statement
11. print("This will always be executed")

Listing 1: demonstration of an if-statement.

Note how the program has print statements both before, within, and after the if-statement. The

first and last statements should always be executed, and the middle depends on the value of the

reaction time variable. Even when output is not needed in your program, it can sometimes still be

useful to add similar print statements that map to the control-flow of your program. Sometimes you

might have an error in your code because you assume that some code in some if-statement is

if boolean_expression:

 statements

executed, but by placing a print statement within that if-statement you discover that nothing is printed

at all and therefore the if-statement is, in fact, not executed. In that sense, these print statements can

aid in debugging your code and guide you toward potential mistakes you are making.

The version of the if-statement that we just showed only has a body with code to be executed when

the value of the Boolean expression is True. More often, we want to execute an alternative set of

instructions in case the condition is not true as well. For this we can add an else clause to the if

statement. The indentation of the else syntax must align with the if-statement header (together they

form an if-else statement). The body of the else clause is again indicated using an indentation to the

right.

Figure 2: Pseudocode and flow chart of an if…else statement

In Listing 2, we have applied this structure by extending the code example from Listing 1. If the reaction

time is smaller than 200 ms, we still get the same message. If that is not the case, we get a message

that the participant is responding too fast. Again, try to change the value of the reaction time to see

how it affects the output of the program.

1. # Define a variable
2. reaction_time = 200
3.
4. print("We will now compare the value of rt to 200")
5.
6. # Evalute the if-statement
7. if reaction_time < 200:
8. print("Well done")
9. else:
10. print("Too fast")
11.
12. # First line of code after the if-statement
13. print("This will always be executed")

Listing 2 demonstration of an if…else statement

We can extend this structure even further by adding an elif statement after the body of the first if-

statement. Now we can use another boolean expression and a corresponding body of code that will

run when this expression evaluates to true (Figure 3).

if boolean_expression:

 statements

else:

 statements

Figure 3 Pseudocode and flow chart of an if…elif…else statement

It is important to recognize that the mechanism that evaluates the expressions in an if-elif-else

statement will evaluate the body of code that corresponds to the first statement that evaluates to

True, and it will skip any remaining statements. This means that there can be a situation where both

the if and the elif will have a true expression. But since the if-statement comes first, only that

corresponding code will be executed.

A demonstration of this structure is shown in Listing 3. We first check if the reaction time is smaller

than 200 ms. If that is not the case, we check if the reaction time is larger than 200 ms. Finally, the else

clause captures the cases where the reaction time is exactly equal to 200 ms.

1. # Define a variable
2. rt = 200
3.
4. print("We will now compare the value of rt to 200")
5.
6. # Evaluate the if-statement
7. if rt < 200:
8. print("Too slow")
9. elif rt > 2000:
10. print("Too fast")
11. else:
12. print("Well done")
13.
14. # First line of code after the if-statement
15. print("This will always be executed")

Listing 3: Demonstration of an if … elif … else statement

Nested if statements
There are no constraints on the code that you enter in the body of an if-statement. This means that

you can have another if-statement within an if-statement, a structure that is called a “nested if-

statement". Listing 4 demonstrates this idea in a program that gives feedback on the reaction time,

but only if comments have been enabled through a display_comments variable.

1. # Use this variable to set if we display comments

if boolean_expression:

 statements

elif boolean_expression:

 statements

else:

 statements

2. display_comments = True
3.
4. # Define a reaction time
5. rt = 300
6.
7. if rt < 300:
8. if display_comments == True:
9. print("Too slow!")
10.
11. print("I might have displayed a comment")
12.
13.
14. print("Back in the main code")

Listing 4: Example of a nested if-statement

Although nested statements are occasionally useful, you should be careful that you do not exaggerate

with the level of your nested statements (meaning how many if within if within if … statements you

have). Having too many nested statements makes code more complex to read and more difficult to

debug and should therefore be avoided.

Equivalence of code
It will often be the case that code can be written in different ways, while still producing the same

output. To illustrate this, we have rewritten the example from listing 3 below. Instead of using an if-

elif-else structure, we have now used three if statements.

1. # Define a variable
2. rt = 200
3.
4. print("We will now compare the value of rt to 200")
5.
6. # Multiple if-statements instead of if...elif...else
7. if rt < 200:
8. print("Too slow")
9. if rt > 2000:
10. print("Too fast")
11. if rt >= 200 and rt <= 2000:
12. print("Well done")
13.
14. print("This will always be executed")

Listing 5: This code is equivalent to the code presented in listing 3.

While the output is the same in both listings, there is a difference in the way this code is executed.

Because we have three separate if-statements, each Boolean expression will always be evaluated

independently of the truth value of the other expressions. In contrast, in an if…elif…else

statement, each Boolean expression will be evaluated until the first one that is true is met. You could

also argue that they are psychologically different (not that this matters for the computer) in the sense

that an if-elif-else statement forms a code entity that relates to a specific operation, namely

evaluating the reaction time. Therefore, using separate if-statements makes less sense here.

As your code grows in complexity, it’s easy to imagine that the range of possible ways to write it also

expands accordingly. This can pose a potential distraction for novice programmers who might begin to

question whether their approach is the “correct” one. When you are taking your first steps into

programming, your primary concern should be if the code does its intended task. If that is the case, it’s

a success. Improving code quality and structure can always come later. This is a common practice called

code refactoring. The core idea is that you modify an existing ode to enhance its organization and

readability while maintaining its original functionality.

The while-statement
If we need to repeat a block of code, and if the decision to repeat the code depends on a boolean

expression, we can use a while statement. If the boolean expression evaluates to true, the body of the

while loop is executed. As with statements, the body of a while statement is indicated using

indentation. The typical procedure is that we start with an initialization step that makes sure that the

boolean expression evaluates to true at least the first time it is evaluated. The code in the while

statement then takes care of updating the variables that are used in this boolean expression so that at

some point the expression can also evaluate to false and the while loop exits.

Figure 4: Pseudocode and flow chart of a while statement

1. # Specify initial condition
2. correct_password = False
3.
4. # Evaluate the condition
5. while correct_password == False:
6. user_password = input("Please enter the password: ")
7.
8. # Evaluate if the condition can be updated
9. if user_password == "SECRET":
10. correct_password = True
11.
12. # Here we are outside the while loop
13. print("While loop has ended")

Listing 6: A password verifier

In listing 6 we have a program that repeatedly asks a user to provide a password until we have the

correct one. We start with an initialization step and set the value of the correct_password

variable to False. That way, the Boolean expression in the while statement (which comes immediately

initialization_statement

while boolean_expression:

 statements

 update_statement

after the initialization), will be True at least once (i.e., it is True that the value of correct_password

is False).

In the body, we first retrieve the user input. This input is then compared to the correct password. If

there is a match, we update the value of the correct_password variable. When we reach the end

of the body of the while-statement, code execution moves back to the header in which the boolean

expression is evaluated again. If we had a match, this expression is no longer true and code execution

moves to the first line after the body of the while-loop. If not, the code is repeated.

It is possible to forget to write a proper update step, for example when we would not have included

the if-statement in the example above. In that case, the while-loop will repeat indefinitely, a situation

called an infinite while loop. If this happens, you must end your program manually. One way is to use

a Task Manager (on Windows). The Spyder IDE also has a red button in the IPython console window.

Pressing this button interrupts the execution of your script so that you can fix this mistake and run it

again.

Altering the flow of the while loop

There are two statements that can be used to alter the normal flow of events in a while loop. The

continue statement can be used as an instruction to skip any remaining code in the while-loop and

jump back to the header where the boolean expression is evaluated again.

1. # Initialization
2. counter = 0
3.
4. # while-loop
5. while counter <= 5:
6. counter = counter + 1
7.
8. if counter == 3:
9. continue
10.
11. print(counter)
12.
13. print("Done")

Listing 7: demonstration of the continue statement

In Listing 7 we have a program that increments a numerical variable until it exceeds the number 5. All

the numbers are printed, except for the number 3. This is because when the counter variable reaches

that value, it leads to the execution of the continue statement. This forces execution back to the start

of the while-loop, therefore skipping the print statement.

A break statement can be used to break out of the while loop completely. As with the continue

statement, it will skip any remaining statements in the while-body. But it will also skip the head of the

while-statement and move code execution to the first line of code after the while-loop.

1. # Initialization
2. counter = 0
3.
4. # while-loop
5. while counter <= 5:
6. counter = counter + 1
7.
8. if counter == 3:
9. break
10.
11. print(counter)
12.
13. print("Done")

Listing 8: Demonstration of using a break statement to end a while loop irrespective of its condition

This is demonstrated in listing 8, where we have changed the continue statement into a break

statement. Now, when the counter variable becomes equal to 3, the break statement will move code

execution to line 13 (the first line outside the while loop), so only the numbers 1 and 2 will be printed.

